

© Syncsort® Incorporated, 2016

All rights reserved. This document contains proprietary and confidential material, and is only for use by

licensees of DMExpress. This publication may not be reproduced in whole or in part, in any form,

except with written permission from Syncsort Incorporated. Syncsort is a registered trademark and

DMExpress is a trademark of Syncsort, Incorporated. All other company and product names used

herein may be the trademarks of their respective owners.

The accompanying DMExpress program and the related media, documentation, and materials

("Software") are protected by copyright law and international treaties. Unauthorized reproduction or

distribution of the Software, or any portion of it, may result in severe civil and criminal penalties, and will

be prosecuted to the maximum extent possible under the law.

The Software is a proprietary product of Syncsort Incorporated, but incorporates certain third-party

components that are each subject to separate licenses and notice requirements. Note, however, that

while these separate licenses cover the respective third-party components, they do not modify or form

any part of Syncsort’s SLA. Refer to the “Third-party license agreements” topic in the online help for

copies of respective third-party license agreements referenced herein.

 Table of Contents

DMX-h ETL Use Case Accelerator: Word Count i

Table of Contents

1 Introduction .. 1

2 Word Count with DMX-h IX ... 2

2.1 J_WordCount job .. 2

2.1.1 T_WordCountPivotTokens Task .. 2

2.2 T_WordCountAggregateWords Task .. 3

Appendix A Word Count with DMX-h User-defined MapReduce .. 5

A.1 Map Step ... 5

A.1.1 MT_PivotWordTokens.dxt .. 6

A.1.2 MT_MapWordAgg.dxt .. 6

A.2 Reduce Step ... 8

A.2.1 RT_FinalReduceAgg.dxt .. 9

 Introduction

DMX-h ETL Use Case Accelerator: Word Count 1

1 Introduction

Word Count is a common application used to explain how Hadoop works. The

application identifies all uniquely occurring words in a set of source data, and for each

word, computes the total number of occurrences of that word. This use case

accelerator implements Word Count in DMX-h ETL by efficiently tokenizing lines into

words and aggregating on the words to obtain a total count for each.

Two solutions are given:

 DMX-h Intelligent Execution (IX) – this solution, presented in the next section,

is the simplest and most efficient way to develop this example. Taking

advantage of IX, it allows the job to be run on the edge node, on a single

cluster node, or in a Spark or MapReduce cluster as specified.

 User-defined MapReduce – this solution, provided as a reference in Appendix

A. is more complex, and is used when you want to specifically control how the

job is run. It can also be specified to run either standalone or in the cluster.

For guidance on setting up and running this and other use case accelerators, see the

Guide to DMX-h ETL Use Case Accelerators.

http://bigdatakb.syncsort.com/#KB/UseCaseAccelerators/DMX-h/244_Guide_to_DMX-h_ETL_UCAs.htm

 Word Count with DMX-h IX

DMX-h ETL Use Case Accelerator: Word Count 2

2 Word Count with DMX-h IX

The Word Count solution in DMX-h ETL consists of a job, J_WordCount.dxj, which

contains a copy task followed by an aggregate task.

2.1 J_WordCount job

This job consists of a copy task responsible for tokenizing the input file, and an

aggregate task to count the number of occurrences of a word.

2.1.1 T_WordCountPivotTokens Task

This task uses a copy to read the file and replaces spaces between words with record

terminators.

The source in this example is an unstructured text file consisting of lines of text broken

up by UNIX linefeed terminators. Although we specify a pipe (|) as a delimiter, no

predetermined fields exist in the free-form line or record, so we describe a layout that

 Word Count with DMX-h IX

DMX-h ETL Use Case Accelerator: Word Count 3

consists of one field that extends to the end of the record. A copy task is sufficient to

read the source file, as no ordering requirements exist for the first step.

We accomplish the pivoting by inserting record terminators between the words. Using

the regular expression '([^]+) +', we search for a group of one or more non-space

characters (indicated with parentheses) followed by one or more spaces.

When we find this, we replace it with the preserved non-space group of characters

followed by a newline ('\n') instead of a space. The RegExReplace function finds and

replaces all occurrences of the pattern. This introduces line breaks or record

terminators between all previously space-separated tokens and words as well as

between punctuation.

The RegExReplace expression is defined in the WordTokens value, which is included

in the target via a reformat.

Whether the overall job is run in or outside of Hadoop, this task will run on the edge

node.

2.2 T_WordCountAggregateWords Task

This task reads the output of the previous task and performs two processing steps:

1. Empty records are filtered out.

2. Records are trimmed to remove whitespace, and aggregated to obtain a final count.

 Word Count with DMX-h IX

DMX-h ETL Use Case Accelerator: Word Count 4

The source, a pipe-delimited UNIX text file, is the target of the previous task. The

source record contains only one field, WordTokens, whose field values consist of the

single token or word produced by the previous task.

Before any other processing, we use a bulk filter to eliminate empty lines since they

contain no words. We also want to eliminate lines that consist of only spaces. To do

this, first we create a value, TrimmedKey, that uses the Trim() function to eliminate

leading and trailing spaces, leaving just the word itself, if any. We then use a condition,

ContainsWord, to retain only records that contain words (TrimmedKey != “”).

A sorted aggregation is performed on the remaining records, grouping by the field

TrimmedKey, which is the word being counted. The count() function is used to obtain

the final occurrence count for each key.

A record is produced as output for each unique word, followed by the tab character and

the total count of occurrences of that word in the original source file.

 Word Count with DMX-h User-defined MapReduce

DMX-h ETL Use Case Accelerator: Word Count 5

Appendix A Word Count with DMX-h User-defined
MapReduce

This user-defined MapReduce solution is provided as a reference in the event that

particular knowledge of your application’s data would benefit from manual control of the

MapReduce process.

The Word Count job in DMX-h contains a map step and a reduce step, separated by a

MapReduce data flow connector between the final map task and the initial reduce task,

as follows:

The map step first reads an input file containing the full text of the novel Little Women

by Louisa May Alcott and pivots the data to tokenize individual words. It then assigns

partition IDs to the data such that all identical words will go to the same reducer. Each

mapper also aggregates the words known to the mapper, producing a partial count of

those words. The aggregation is partial since each mapper is passed only a subset of

the input data. The partial map-side aggregation is useful, however, considering the

frequency of words such as “a”, “the”, and “and”. This partial aggregation subsequently

reduces the amount of data that must be processed by the reducers.

The reduce step receives partial word counts from the mappers. Since for any given

word, all partial counts for that word go to the same reducer, the reducers total all

incoming counts of each word into a final count for that word. Finally, the reduce step

writes all words and corresponding word counts to the target.

A.1 Map Step

The Word Count map step in DMX-h consists of a task that pivots the data to create

one record per word, and another task that assigns a partition ID to each record based

on the key and performs a partial count of each word before sending the partitioned

data to the reduce step.

 Word Count with DMX-h User-defined MapReduce

DMX-h ETL Use Case Accelerator: Word Count 6

A.1.1 MT_PivotWordTokens.dxt

This task uses a copy to read the file and replaces spaces between words with record

terminators.

The source in this example is an unstructured text file. The source consists of lines of

text broken up by UNIX line terminators (linefeed). Although we specify a pipe (|) as a

delimiter, no predetermined fields exist in the free form line or record, so we describe a

layout that consists of one field that extends to the end of the record. A copy task is

used to read the source file as no ordering requirements exist for the first step.

We now accomplish the pivoting by inserting record terminators between the words.

Using the expression '([^]+) +', we search for a group of one or more non-space

characters (indicated with parentheses) followed by one or more spaces.

When we find this, we replace it with the preserved non-space group of characters

followed by a newline ('\n') instead of a space. The RegExReplace function finds and

replaces all occurrences of the pattern. This introduces line breaks or record

terminators between all previously space-separated tokens and words as well as

between punctuation.

The RegExReplace expression is defined in the WordTokens value, which is included

in the target via a reformat.

A.1.2 MT_MapWordAgg.dxt

The second task performs an aggregation on the words and partitions the data in

preparation for the reduce step.

 Word Count with DMX-h User-defined MapReduce

DMX-h ETL Use Case Accelerator: Word Count 7

The source, a pipe-delimited UNIX text file, is the target of the previous task. Only one

field, which is named WordTokens, exists in the source record. The field values consist

of the single token or word produced by the previous task.

Before any other processing, we use a bulk filter to eliminate empty lines since they

contain no words. Instead of empty lines, we could also have lines that only consist of

spaces. To eliminate trailing and leading spaces, we create a new value, TrimmedKey,

which is the word coming in with spaces removed using the Trim() function. We then

filter using a named condition, ContainsWord, to filter all records that when trimmed

contain no words (TrimmedKey != “”).

Since all records with the same primary key value (PartitionKey + TrimmedKey) must

go to the same reducer in order for all occurrences of each word to be totaled, the

partition ID is determined by creating a CRC32() hash value based on this key. In

addition, the environment variable DMX_HADOOP_NUM_REDUCERS (automatically

set to the configured number of reducers when running in Hadoop) is passed to the

function to limit the range of partition ID values to the number of reducers invoked for

your MapReduce job.

For the aggregation, we group by the PartitionKey as well as the new value,

TrimmedKey. We count the occurrences of the same word by introducing the count()

aggregation function. This is only a partial count for each word, since the input to each

mapper is a subset of the overall source data. The count format is set to 4-byte

unsigned binary integer to improve performance.

 Word Count with DMX-h User-defined MapReduce

DMX-h ETL Use Case Accelerator: Word Count 8

The option to sort aggregated records by group by fields is selected so that the data is

sorted by the partition ID, a requirement to ensure the data is routed to the correct

reducer. Further, the partition ID is output as the first field in the Reformat, also a

requirement for correct MapReduce operation.

A.2 Reduce Step

The Word Count reduce step in DMX-h ETL consists of one task that aggregates the

partial word counts calculated during the map step into a final count for each word.

As the partition IDs were assigned by the map job based on individual words, partial

counts from different mappers for each word are routed to the same reducer, ensuring

that all occurrences of each word are accounted for in the reduce step.

 Word Count with DMX-h User-defined MapReduce

DMX-h ETL Use Case Accelerator: Word Count 9

A.2.1 RT_FinalReduceAgg.dxt

The input to this task is made up of pairs of words and partial word counts from

different mappers. These partial word counts will be summed into a total word count for

each word.

A sorted aggregation is performed, grouping by the field “Key,” which is the word being

counted. The field “Value,” containing partial counts o f each word, is summed for

records with matching word keys. A record is produced as output for each unique word,

which is followed by the tab character and the total count of occurrences of that word in

the original source file.

The Hadoop framework will create a directory with the target name specified here, and

each reducer’s output will be written to its own “part-reducer_ID” file within that

directory.

About Syncsort

Syncsort provides enterprise software that allows organizations to collect, integrate, sort, and distribute

more data in less time, with fewer resources and lower costs. Thousands of customers in more than

85 countries, including 87 of the Fortune 100 companies, use our fast and secure software to optimize

and offload data processing workloads. Powering over 50% of the world’s mainframes, Syncsort software

provides specialized solutions spanning “Big Iron to Big Data”, including next gen analytical platforms

such as Hadoop, cloud, and Splunk. For more than 40 years, customers have turned to Syncsort’s

software and expertise to dramatically improve performance of their data processing environments, while

reducing hardware and labor costs. Experience Syncsort at www.syncsort.com.

Syncsort Inc. 50 Tice Boulevard, Suite 250, Woodcliff Lake, NJ 07677 201.930.8200

http://www.syncsort.com/

